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A b s t r a c t

A  variety of methods are available for the quantitative description and analysis of neurodegenerative disease.  
If neurodegenerative disease exists as a series of distinct disorders, then classificatory methods such as hierarchical 
cluster analysis (HCA) and decision tree analysis (DTA) can be used to classify cases into groups more objectively.  
If neurodegenerative disease consists of overlapping phenotypes, then the Braun-Blanquet ‘nodal’ system and ‘con-
stellation diagrams’ implicitly recognise intermediate cases and reveal their relationships to the main groupings.  
By contrast, if cases are more continuously distributed without easily distinguishable disease entities, then methods 
based on spatial geometry, such as a triangular system or principal components analysis (PCA), may be more appro-
priate as they display cases spatially according to their similarities and differences. This review compares the differ-
ent methods and concludes that as a result of the heterogeneity and overlap commonly present plus the multiplicity 
of possible descriptive variables, methods such as PCA are likely to be particularly useful in the quantitative analysis 
of neurodegenerative disease. A more general application of such methods, however, has implications for studies  
of disease risk factors and pathogenesis and in clinical trials.
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Introduction

Three hypotheses have been proposed to describe 
neurodegenerative disease as a  whole [8]. First, as 
a  result of the complex interactions between cor-
related groups of clinical and pathological features, 
distinguishable disease entities exist which can be 
described, named, and classified. This hypothesis 
represents an essentially traditional view of neurode-
generative disease as comprising a series of more or 
less distinct ‘named’ disorders such as Alzheimer’s dis-
ease (AD) [3], dementia with Lewy bodies (DLB) [52], 

Pick’s disease (PiD) [62], and Creutzfeldt-Jakob dis-
ease (CJD) [27,45]. Second, although distinctive 
neu rodegenerative disorders may exist, cases are 
frequent which exhibit more than one type of pa tho-
logical change, variously described as ‘intermediate 
cases’, ‘overlap cases’, or as examples of ‘multiple 
pathology’ [14,46]. Hence, cases have been described 
which combine the features of AD and vascular 
dementia (VD) [33,61,69,70], AD and DLB [5,11,29, 
30,36,43,53,57], or AD and CJD [40]. More complex 
combinations of cases with three or more ‘multi-
ple pathologies’ are also being described and are 
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increasingly difficult to accommodate within con-
ventional classificatory systems [14,18,46,48,77]. 
Third, no two individual cases of neurodegenerative 
disease are identical and cases as a  whole exhib-
it more or less continuous variation in clinical and 
pathological features and therefore, form a ‘continu-
um’ within which definable entities cannot be easily 
distinguished [8]. 

Which of these three hypotheses will ultimately 
prove to be the most realistic description of neuro-
degenerative disease remains to be established [8]. 
Nevertheless, there has been a growing awareness 
that the traditional division of neurodegenerative 
disease into distinct entities may not be fully jus-
tified and that phenotypic variation, overlap, and 
the presence of multiple pathology are characteristic 
of many disorders [8,14,46]. As a result, there have 
been calls for a reconsideration of existing disorders 
and for a  new ‘classification’ of neurodegenera-
tive disease which can take these factors fully into 
account [8,14,31,35,58,60]. 

A variety of methods are available for the quan-
titative analysis of neurodegenerative disease, many 
being associated with the analysis of data from MRI, 
FDG-PET, or genome scans of dementia patients, 
and concerned essentially with classification and 
diagnosis [2,49,67]. The utility of a  quantitative 
method, however, will depend on which of the three 
hypotheses best describes neurodegenerative dis-
ease. If distinct disorders exist, then classificatory 
methods such as hierarchical cluster analysis (HCA) 
or decision tree analysis (DTA) could be used to clas-
sify cases into groups more objectively. However,  
if neurodegenerative disease consists of relatively 
distinct disorders but with frequent intermediate 
cases [14], methods such as the ‘Braun-Blanquet 
nodal’ system [20] or ‘constellation diagrams’ [1] 
could be used which implicitly recognise intermedi-
ate cases and reveal their relationships to the main 
groupings. If cases are continuously distributed 
with out easily distinguishable disease entities, then 
methods based on spatial geometry may be more 
appropriate [63]. Such methods arrange cases of 
disease with reference to a co-ordinate frame such 
that their similarities and differences are spatially 
represented [12,17,63]. The objective of this review 
is to illustrate the application of these methods and 
to identify those which may prove to be the most 
useful in the analysis and description of neurode-
generative disease. 

Methods based on classification

The theoretical basis for classifying neurodegen-
erative disease is that clinico-pathological groups of 
cases exist which are distinct enough to be ‘named’ 
as a disorder, such that within a group, cases are more 
or less homogenous and intermediates between one 
group and another relatively rare. The continued rec-
ognition of many familiar ‘historical’ disorders such 
as AD [3], DLB [52], PiD [62], and CJD [27,45] is large-
ly based on this assumption. If distinct groupings  
of cases exist, it would be logical to use quantita-
tive methods to attempt to classify cases into these 
groups more objectively. A variety of such methods 
exist and this review describes two basic types:  
(1) HCA [63], and (2) DTA [64]. More complex meth-
ods include ‘orthogonal projection to latent struc-
tures’ (O-PLS), a method which can be used in cir-
cumstances if there are more descriptive variables 
than cases [74], ‘support vector machines’ (SVM) 
in which given an existing binary classification, an 
al gorithm assigns new examples to the existing clas-
sification [25], and ‘artificial neural networks’ (ANN) 
which are based on biological neural networks and 
which essentially ‘learn’, i.e., progressively improve 
their performance over time [66]. 

Hierarchical cluster analysis 

Hierarchical cluster analysis (HCA) results in 
a  classification of cases based on a  measure of 
their similarity, cases being joined or linked into 
groups successively to form a  tree or dendrogram 
[10,37,72]. Many such methods have been described 
[63] but relatively few have been applied to the clas-
sification of neurodegenerative disease as a whole. 
HCA has been used to classify cases of primary pro-
gressive aphasia (PPA) [76] and behavioural variant 
fronto-temporal dementia (bvFTD) [78] and has also 
been used to detect common features among differ-
ent neurodegenerative diseases such as AD, CJD, and 
fatal familial insomnia (FFI) [73].

The first problem to be considered using HCA, 
which assumes normally distributed data, is whether 
the defining variables include qualitative (presence/
absence) data, semi-quantitative scores, continuous 
quantitative measures such as density or ‘load’, or 
a mixture of all three [6]. In addition, variables may 
have been measured on different scales with sub-
stantially different means and standard deviations 
(SD) and variables with especially high means and 



3Folia Neuropathologica 2018; 56/1

The quantitative analysis of neurodegenerative disease: classification, noda, constellations, and multivariate geometry

SDs could bias the results of the analysis. As a con-
sequence, the data can be ‘standardised’ by con-
verting all variables so that they are members of 
the same distribution, most commonly the standard 
normal distribution. Second, distance ‘d’ is required 
which measures the similarity of one case to another. 
There are various methods of calculating ‘d’ but the 
simplest is to assume that the ‘S’ descriptive vari-
ables are dimensions making up an S-dimensional 
space, ‘Euclidean distance’ being used as a similarity 
measure by the application of Pythagoras’ theorem. 
Third, a linkage rule needs to be chosen to determine 
how similar cases are joined together to form larg-
er groupings, the ‘un-weighted pair–group method 
using arithmetic averages’ (UPGMA), in which all 
distances contribute equally to each average, being 
commonly used [24].

An example of an HCA applied to cases of fron-
totemporal lobar degeneration (FTLD) with transac-
tive response (TAR) DNA-binding protein 43 (TDP-43) 
proteinopathy (FTLD-TDP) is shown in Figure 1. Stud-
ies suggest that FTLD-TDP is neuropathologically 
heterogeneous [17] with division into four subtypes 
(currently designated A, B, C, and D) based on the 
distribution and density of ‘signature’ pathological 
inclusions in the cortex [22,47,55,68]. Division of 
FTLD-TDP into subtypes is often made subjective-
ly and HCA could be used to establish their valid-
ity. Hence, neuropathological variation among 94 
cases of FTLD-TDP, previously assigned subjectively 
to subtypes A to D, was studied using quantitative 
estimates of the density of the TDP-43-immunore-
active neuronal cytoplasmic inclusions (NCI), neuro-
nal intranuclear inclusions (NII), dystrophic neurites 
(DN), and oligodendroglial inclusions (GI) in frontal 
and temporal lobes [17]. To establish the groups, the 
‘amalgamation schedule’ is examined, i.e., the linear 
sequence in which cases were joined, and a  ‘deci-
sion line’ (DL) defined where there is a steep rise in 
the curve, i.e., the point at which more distinctive 
groups are being joined together.

The analysis resulted in four main groups of 
cases (1-4), the remaining forming a  residual or 
miscellaneous group (M) not closely related either 
to each other or to groups 1-4. Group 1 is a small 
group defined by particularly high densities of DN 
throughout the frontal and temporal lobe with the 
exception of the DG, and with a  preponderance 
of sporadic cases, the majority representing sub-
type C. Group 2 is a group of mainly sporadic cases 

defined by a high density of NCI in the DG with DN 
in some regions, various subtypes being represent-
ed. The majority of cases within group 3, the largest 
group, were defined by relatively low densities of 
TDP-43-immunoreactive inclusions, continuous vari-
ation among cases, and comprised various subtypes. 
The dendrogram suggests that this group could be 
further subdivided by establishing a DL at a  lower 
linkage distance. Group 4 is predominantly sporadic 
and defined by NCI in the upper cortex and in the 
DG and comprises mainly subtype B. Group M is 
the most heterogeneous, the cases being predomi-
nantly familial and characterised by high densities 
of NCI and NII together with moderate densities of 
DN. Hence, the more ‘objective’ classificatory meth-
od confirms the considerable heterogeneity within 
FTLD-TDP but does not fully support the subjective 
division of cases into distinct subtypes [17].

Decision tree analysis 

In contrast to HCA, decision tree analysis (DTA) is 
used to predict group membership of cases (Y) from 

Fig. 1. An example of an objective ‘classification’ 
using hierarchical cluster analysis (HCA) of 94 
cases of frontotemporal lobar degeneration with 
TDP proteinopathy (FTLD-TDP) resulting in a den-
drogram. The dendrogram was obtained using 
the hierarchic clustering ‘un-weighted pair–group 
method using arithmetic averages’ (UPGMA) and 
‘Euclidean distance’ as a  measure of the ‘simi-
larity’ between cases, DL – decision line used to 
establish the groups, 1-4 resultant groups of cas-
es; M – miscellaneous group of cases.
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measurement of one or more predictor variables (X) 
and is an important method of ‘data mining’ [64]. 
DTA is closely related to both discriminant analy-
sis and to HCA but regarded as more flexible than 
either [64]. DTA can be calculated using categorical 
predictor variables, continuous predictor variables, 
or a  mixture of both, the method assuming that 
predictors are measured at least on an ordinal scale 
and therefore DTA is less stringent in its assump-
tions of normality than other types of the classif-
icatory method. DTA has been used to classify AD 
cases according to the expression of different patho-
genic genes [39,49,79]. In addition, FDG-PET scans 
of human patients often include DTA among their 
automatic classificatory techniques [69].

‘Classification and regression tree’ (C&RT) is one 
of the most commonly used DTA methods [21] and 
an example applied to the classification of a group 
of AD and control cases based on the density of neu-
rofibrillary tangles (NFT) in three brain regions, viz., 
superior frontal gyrus (SFG), parahippocampal gyrus 
(PHG), and sector CA1 of the hippocampus is shown 
in Figure 2. First, box 1 is the ‘root node’ in which all 

control and AD cases are shown by the relevant his-
tograms. Second, boxes 2 and 3 are the ‘child nodes’ 
resulting from classifying the original total number 
of cases into two groups. Third, boxes 2 and 3 also 
show how the AD and control cases have been allo-
cated. Hence, box 2 contains 15 of the original cases, 
12/13 control cases and 3 ‘misclassified’ AD cases 
while box 3 contains 14 of the original cases, 13 AD 
cases and 1 misclassified control. Fourth, the analysis 
selects the density of NFT in the PHG as the basis 
of the split, densities greater than 14.45 NFT mm–2 
being necessary to discriminate AD from controls. 
Hence, a reasonable classification was achieved but 
with three misclassified AD cases and one control, 
reflecting the complexity of the interface between 
AD and the cognitively normal elderly [7], the basis 
for the separation among the groups also being iden-
tified. By contrast, the ‘chi-square automatic inter-
action detection’ (CHAID) method of DTA has been 
used to classify AD cases based on various cerebral 
spinal fluid (CSF) markers as variables (Ab1-42, total 
tau, phosphorylated tau (p-tau) [19]. The first step 
decision was based on Ab1-42/p-tau ratio and the sec-
ond step on p-tau alone.

Methods accommodating overlapping 
phenotypes 

If neurodegenerative disease consists of rela-
tively distinct disorders but with a degree of over-
lap among the different entities [14], cases exhibit-
ing intermediate features or multiple pathology are 
likely to be common [46]. Hence, a descriptive sys-
tem is required which can recognise both the major 
groupings but also accommodate the overlap cases. 
Two such methods are described: (1) a semi-objec-
tive method based on ‘Braun-Blanquet nodal’ sys-
tem, originally used to classify vegetation in the 
natural world [20] and (2) ‘constellation’ diagrams 
using a  system based on either chi-square (c2) [1] 
or Pearson’s correlation coefficient (‘r’) [28]. Neither 
of these methods have been previously applied to 
neurodegenerative disease.

Braun-Blanquet’s ‘noda’

The basis of Braun-Blanquet’s system [20] is the 
‘nodum’, a  concept which in the context of neuro-
degenerative disease corresponds to a basic disease 
entity, and is an abstraction obtained from lists of 
clinical and pathological features obtained from 

Fig. 2. Decision tree analysis (DTA) of 13 control 
and 16 Alzheimer’s disease (AD) cases based 
on the density of neurofibrillary tangles (NFT) 
in the superior frontal gyrus (SFG), parahippo-
campal gyrus (PHG), and sector CA1 of the hip-
pocampus and carried out by the ‘classification 
and regression tree’ (C&ART) method (1 – ‘root 
node’, 2, 3 – ‘child nodes’). Histograms show 
how many cases of each type are ‘classified’ 
within each child node. The split is made on the 
basis of density of NFT within the PHG, a density  
> 14.48 NFT mm–2 defining AD.
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a series of randomly selected cases. An example of 
this approach applied to 12 cases, six each of two 
closely-related disorders, viz. corticobasal degener-
ation (CBD) [13] and progressive supranuclear palsy 
(PSP) [15,54] and based on six defining pathological 
features is shown in Figure 3. From a two-way table 
of cases and the presence/absence of defining fea-
tures, it is possible to establish those characteristics 
which occur in a given number of cases and there-
fore, to establish ‘constant’ features. In this example, 
only astrocytic plaques (AP) and tuft-shaped astro-
cytes (TSA) appear to differentiate the two groups 
of cases. Cases which have AP are grouped together 
initially to form nodum X (representing CBD) while 
cases which have TSA are designated as nodum Y 
(representing PSP). However, there are also cases 
which share the features of X and Y and have both 
AP and TSA (cases E, F, G), and these are identified 
as the intermediate or overlap cases. Hence, the 
concept of noda may be useful in neurodegener-
ative disease because it implies not only the exis-
tence of valid groupings, but also intermediate cas-
es. The Braun-Blanquet system, however, relies on 
the assumption that relatively distinguishable dis-
ease entities actually exist [8]. In addition, there is 
a degree of subjectivity in establishing the position 
of the noda. Nevertheless, if neurodegenerative dis-
ease is ultimately shown to be distributed in rela-
tively distinct groups but with less common interme-
diate cases, then the Braun-Blanquet system could 
provide a  useful description of the noda and the 
regions of overlap. 

Constellation diagrams

Constellation diagrams provide a  two-dimen-
sional representation of a  sample of cases using 
either c2 as a measure of the association between 
all pairs of cases if the data are qualitative [1] or 
Pearson’s correlation coefficient ‘r’ if data are quan-
titative [28]. The degree of similarity is displayed as 
a  ‘constellation’ diagram using the reciprocal of c2 
or ‘r’ as a  measure of distance between each pair 
of cases. An example of this method applied to 12 
cases of AD and DLB and based on the presence/
absence of Lewy bodies (LB) and AD pathology in 
the form of β-amyloid (Aβ) deposits in regions of 
the frontal and temporal lobe is shown in Figure 4. 
Four of the cases, identified originally as ‘pure’ DLB 
(bottom right), form a cluster of closely linked cases 

(p < 0.01) with a degree of spatial separation from 
those cases which also have AD as a co-pathology 
(DLB/AD) and with a clear separation from two ‘pure’ 
AD cases, a closer spatial relationship being present 
with two further AD cases [44]. Such a spatial sep-
aration is obtained using the large positive asso-
ciations between cases, the general positioning of 
the clusters then being determined by the negative 
associations. It is unlikely in this type of analysis that 
any of the resultant groupings will be completely iso-
lated from the others, each will be linked to adjacent 
groups by associations between its members via the 
intermediate cases. In addition, the strength of the 
linkages can be assessed by the associated ‘P’ val-
ues, in this case the stronger connections indicated 

Fig. 3. Braun-Blanquet’s ‘nodal’ method: Letters 
A to L represent cases of corticobasal degener-
ation (CBD) and progressive supranuclear palsy 
(PSP) defined by various pathological features 
(NFT – neurofibrillary tangles, GI – oligoden-
droglial inclusions, AP – astrocytic plaques, 
TSA – tuft-shaped astrocytes, NP – neuritic 
plaques, EN – abnormally enlarged neurons). 
The presence of neuropathological features 
is indicated by vertical lines while cases with 
the same features are joined horizontally. Cas-
es which have the same constant feature, e.g., 
astrocytic plaques (AP) are grouped together to 
form nodum X (representing CBD) while cases 
which have a  different constant feature, i.e., 
tuft-shaped astrocytes (TSA) are designated as 
nodum Y (representing PSP). There are also cas-
es which share the constant features of both X 
and Y (cases E, F, G) and these are the intermedi-
ate or overlap cases.
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by p < 0.01 and the weaker by p < 0.05. Hence, as 
in the Braun-Blanquet system, the method enables 
clusters of cases comprising the major groupings 
to be identified (AD and DLB) but also indicates 
which cases could be intermediates (AD/DLB) and 
illustrates the affinities of the more complex cases 
with the main groupings. The disadvantage of such 
a system is its two dimensional representation and 
therefore, a degree of subjectivity in determining the 
relative location of the cases.

Methods based on spatial geometry 

Neurodegenerative disease may be too hetero-
geneous and the degree of multiple pathology too 
frequent for any of the previous methods to provide 
an adequate description of the distribution of cases. 
Hence, cases of neurodegenerative disease may rep-
resent a ‘continuum’ of the phenotypic change rath-

er than being distributed in distinct groups [8,14,17].  
The often complex relationships that exist among cas-
es suggest that dimensions of phenotypic variation 
are present which are too complex to be represented 
by dendrograms, decision trees, noda, or constella-
tion diagrams. Hence, there may be a  requirement 
to display these relationships more realistically using 
multivariate geometry in which the similarities and 
differences among cases are spatially represent-
ed [63]. This review describes two such methods:  
(1) a  triangular system based on three descriptive 
axes and (2) principal components analysis (PCA) 
which uses a more complex multivariate approach.

A triangular system

If neurodegenerative disease can be described by 
three major neuropathological variables, then a  tri-
angular system could be used to display the cases 

Fig. 4. A chi-square (c2) constellation diagram illustrating the spatial relationships between a group of 
dementia with Lewy bodies (DLB) cases with and without associated Alzheimer’s disease (AD) pathology 
and ‘pure’ AD. Linkages are shown statistically significant at the p < 0.01 and p < 0.05 level. Four of ‘pure’ 
DLB (bottom right) form a cluster of closely linked cases (p < 0.01) with some degree of spatial separation 
from those cases which also have AD as a co-pathology (DLB/AD) and with a clear separation from two of 
the ‘pure’ AD.
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[38]. As an example, a  triangular system is used to 
describe cases representing two major molecular 
groupings, viz., the tauopathies and synucleinop-
athies, cases which often exhibit considerable het-
erogeneity and overlap [14,32,56]. The three vari-
ables used to describe each case are represented by  
the three sides of an equilateral triangle (A, B, C)  
(Fig. 5): (1) the ratio of the densities of the pathology 
in cortical to subcortical regions (axis A), (2) the ratio 
of densities of neuronal to glial cell pathology (axis B), 
and (3) the ratio of tau to α-synuclein (axis C). Hence, 
these three variables are quantified and used as co-or-
dinates to plot each case within the triangle. In a 2D 
representation, these coordinates will provide three 
point locations for each individual case, i.e., based on 
axes A/B, axes A/C, and axes B/C. The centroid of the 
triangle formed by joining these three points can then 
be used to plot the final location of each case within 
the space.

Figure 5 illustrates the most likely position of 
‘classic’ cases of a number of tauopathies and synu-
cleinopathies. Hence, cases with a  predominantly 
AD-type pathology are located at or near the bottom 
left angle of the triangle (high neuronal/glia, cortical/
subcortical, and tau/α-synuclein ratios) whereas clas-
sic cases of multiple system atrophy (MSA) [50,59] are 
located towards the top of the triangle to the right of 
the angle (low neuronal/glia, cortical/subcortical, and 
tau/α-synuclein ratios), overlap cases exhibiting mul-
tiple pathology would occupy intermediate positions. 
As an example, a miscellaneous group of 15 tauopa-
thy cases, with various primary diagnoses, were quan-
tified as described above and plotted within the trian-
gle (Fig. 6). All cases clustered towards the base of the 
triangle, as expected, a region of high tau/α-synuclein 
ratios. However, there was considerable variation in 
location relative to axes A and B with little clustering 
of cases diagnosed as AD or CBD, although the two 
cases diagnosed as primary age-related tauopathy 
(PART) [26,30] did occur in relative proximity. Such 
a method could also be used to display cases in the 
interface between AD and VD or different molecular 
subtypes of FTLD, e.g., with axes representing a tau or 
TDP-43-immunoreactive pathology.

Fig. 5. A triangular system to plot neurodegener-
ative disease according to three major variables 
(axes A, B, and C). The approximate locations of 
‘classic’ cases of various tauopathies and synu-
cleinopathies within the space are indicated (AD 
– Alzheimer’s disease, AGD – argyrophilic grain 
disease, CBD – corticobasal degeneration, DLB 
– dementia with Lewy bodies, FTDP-17 – fronto-
temporal dementia and parkinsonism linked to 
chromosome 17, MSA – multiple system atrophy, 
PiD – Pick’s disease, PD – Parkinson’s disease, 
PSP – progressive supranuclear palsy).

Fig. 6. Example of a triangular ordination applied 
to a mixed group of 15 tauopathy cases (AD – Alz-
heimer’s disease, AGD – argyrophilic grain dis-
ease, CBD – corticobasal degeneration, PART – pri-
mary age-related tauopathy, GPDC – guamanian 
Parkinson dementia complex).
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A  limitation of the triangular method is that 
three axes are likely to be insufficient to include 
all the variables needed to completely describe the 
neuropathology of a case. Hence, although a trian-
gular-type system may be useful to describe cases 
from a restricted number of molecular groups, it is 
difficult to apply to all molecular pathologies that 
could be present, e.g., to also include β-amyloid (Aβ), 
prion protein (PrPsc), TDP-43, and ‘fused in sarco-
ma’ (FUS) pathologies [16]. In addition, any system 
based on multiple geometry will need to be flexible 
enough to accommodate new molecular pathologies 
as they are discovered [48].

Systems based on multivariate 
geometry

Given the large number of possible descriptive 
variables, a  more inclusive method of analysis is 
required. One such method is principal components 
analysis (PCA) [12,17] which enables the degree of 
similarity between cases to be studied based on all 
of their defining features [6,12]. PCA has frequent-
ly been used as a  ‘feature reduction’ method, i.e., 
to reduce a large number of descriptive variables to 
a smaller number of more important defining vari-
ables [42,80] and hence, in the validation of ques-
tionnaires [71]. PCA has also been used to study 
spontaneous fluctuations in resting brain activity 
and in functional connectivity [51].

The result of a PCA applied to cases as variables 
is a scatter plot of the different cases in relation to 
the extracted principal components (PC) in which the 
distance between pairs of cases reflects their simi-
larity or dissimilarity. The output from such an anal-
ysis is a series of eigenvalues (‘latent roots’) which 
are proportional to the variation accounted for by 
each axis, the eigenvectors (‘latent vectors’) repre-
senting the loadings, i.e., the spatial co-ordinates of 
each case in relation to the PC. A number of PC are 
extracted from the data each accounting for a specif-
ic proportion of the total variance, PC1 for the great-
est individual proportion of the variance and remain-
ing PCs for diminishing amounts of the remaining 
variance. Normally, two or three PCs account for 
most of the variance within the data, the fourth and 
successive PCs accounting for small and diminishing 
amounts of the residual variation, unless consider-
able heterogeneity is present. Such a system would 
appear to have the requisite multivariate geometry 

Fig. 8. Principal components analysis (PCA) of 
94 frontotemporal lobar degeneration with TDP 
proteinopathy (FTLD-TDP) cases with various 
co-pathologies (ADNC – Alzheimer’s disease 
neuropathologic change, DLB – dementia with 
Lewy bodies, HS – hippocampal sclerosis, MND 
– motor neuron disease, CVD – cerebro-vascu-
lar disease) (data from [17]). Cases as a whole 
form a continuum but with some clustering, e.g. 
those with MND as co-pathology while cases 
with AD are more scattered.

Fig. 7. Principal components analysis (PCA) of 
β-amyloid (Aβ) deposition in the temporal lobe 
in control cases, dementia with Lewy bodies 
(DLB), and Alzheimer’s disease (AD). A  plot of 
the cases in relation to PC1 and PC2 (data from 
[8]). No distinct clusters of cases are present and 
there is extensive overlap among groups.
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to provide a framework to accommodate any case of 
neurodegenerative disease regardless of molecular 
complexity. An important consideration, however, is 
the descriptive variables used to define each case 
and how they should be measured. Recently, a sys-
tem based on multiple neuropathological features 
was described that could be used to provide such 
a  framework, viz., the anatomical pathways affect-
ed by the disease (‘anatomy’), the cell populations 
affected (‘cells’), the molecular pathology of ‘signa-
ture’ pathological lesions (‘molecules’), and the mor-
phological types of neurodegeneration (‘morpholo-
gy’), each of which can be subdivided into several 
further variables as required [9]. 

Two examples of the application of PCA are illus-
trated: (1) a  comparison of β-amyloid (Aβ) deposi-
tion in control patients, AD and DLB [8] and (2) to 
examine the occurrence of multiple pathologies in 
FTLD [17]. In the first example, the densities of the 
diffuse, primitive, and classic Aβ deposits in regions 
of temporal lobe were used as variables to study 
cognitively normal subjects and cases of AD and DLB 
[8]. PCA was used to determine whether there were 
distinct differences in Aβ pathology between these 
groups or whether the pathology was more contin-
uously distributed. Three principal components (PC) 
were extracted from the data accounting for 56% of 
the total variance. A plot of the cases in relation to 
PC1 and PC2 (Fig. 7) did not result in distinct clusters 
but suggested considerable overlap in Aβ deposition 
among cases. In addition, there were linear correla-
tions between the densities of Aβ deposits and the 
distribution of the cases along the PC in specific 
brain regions suggesting continuous variation from 
group to group. Hence, PC1 was interpreted as vari-
ation in the degree to which diffuse were converted 
into more mature Aβ deposits, PC2 with differences 
between FAD and SAD, and PC3 with variation in the 
extent to which Aβ pathology spreads to affect the 
hippocampus. 

In the second example, 94 cases of FTLD-TDP 
with a variety of co-pathologies were studied quan-
titatively [17]. Hence, FTLD-TDP pathology can occur 
in association with motor neuron disease (MND) 
[79], hippocampal sclerosis (HS) [4], and with vary-
ing degrees of ADNC [17]. Each case was character-
ised by the density of NCI, NII, DN, and GI in frontal 
and temporal lobes [17] and a  PCA of these data 
illustrating the distribution of the various co-pathol-
ogies is shown in Figure 8. Of the 94 cases, 68% had 

no co-pathology, 22% had a  least one co-patholo-
gy, either MND, ADNC, HS, or CVD, and 4% had two 
co-pathologies. The PCA suggests that the cases with 
associated MND appeared to cluster relative to PC2, 
occurring between factor loadings of 0 and +0.4 and 
therefore may be a more homogeneous subtype of 
FTLD-TDP whereas cases associated with ADNC as 
a co-pathology were significantly less clustered and 
more widely distributed over the plot.

Discussion and conclusions

A variety of methods are available for the quan-
titative description and analysis of neurodegenera-
tive disease and many studies often employ multiple 
procedures. Hence, PCA has been used for feature 
reduction and classificatory methods then employed 
to distinguish between AD, mild cognitive impair-
ment (MCI), and control cases [80]. By contrast, 
a  combination of HCA and discriminant analysis 
was used to distinguish among concentrations of 
various elements in the substantia nigra of Parkin-
son’s disease (PD) and controls using X-ray fluores-
cent microscopy [23]. Various methods of classifying 
MRI data have been compared including O-PLS, DTA, 
ANN, and SVM, slightly better results being achieved 
using SVM and O-PLS [2,65]. PCA and HCA have 
been used to delineate different phenotypes with-
in bvFTD which were shown to be associated with 
distinct anatomical patterns of neurodegeneration 
[65] while a  combination of pre-processing, fea-
ture reduction, and classificatory methods has been 
demonstrated to provide the most efficient classif-
icatory solutions [42]. Nevertheless, many of these 
applications often assume that discrete groupings 
do exist and the analyses are often used to support 
this assumption whereas in reality, the distribution 
of cases may be considerably more complex [8].

An important factor determining the relative util-
ity of different quantitative methods, is the nature of 
neurodegenerative disease itself, i.e. whether it com-
prises distinct diseases, overlapping phenotypes, or 
a continuum [8]. If distinct disorders exist, then clas-
sificatory methods, such as cluster analysis or DTA, 
may be useful in establishing the actual groupings of 
cases more objectively. It is questionable, however, 
whether classificatory methods alone can adequate-
ly describe neurodegenerative disease as a whole giv-
en the degree of phenotypic heterogeneity [12,17], 
overlap between closely-related disorders [14], and 
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the degree of multiple pathology commonly present 
[46]. Nevertheless, the presence of intermediate or 
overlap cases is recognised by the Braun-Blanquet 
system [20] and in constellation diagrams [1], both 
of which could be used to investigate the relation-
ships between two or more closely related disorders 
such as AD and DLB or CBD and PSP. By contrast, 
multivariate geometry may be a more suitable meth-
od in situations where variation among cases is like-
ly to be more continuously distributed. A triangular 
system may be useful in more restricted circum-
stances but a  method such as PCA, which initially 
takes all descriptive variables into account and then 
reduces them to a smaller number of ‘principal com-
ponents’, may be the most useful [12,17]. Several 
types of multivariate methods have been described 
[63] but their relative merits and limitations have yet 
to be studied with reference to neurodegenerative 
disease. Whichever methods ultimately emerge as 
the most useful, a major problem is the current lack 
of quantitative data of sufficient scope, quality, and 
consistency across categories of variables and disor-
ders to define the individual cases appropriately [9].

Replacing any system of classification with a des-
cription based on overlapping phenotypes or a con-
tinuum may have several advantages. First, it may 
provide a  more realistic description of neurodegen-
erative disease as a whole by emphasising its contin-
uous nature and by incorporating disease heteroge-
neity and overlap to their true extent. In addition, it 
would not be necessary to assign new cases to a clas-
sification but instead they would be located within 
an existing continuum of cases [9]. Second, it would 
emphasise that common pathological mechanisms 
may be involved within larger groups of cases thus 
increasing the chance that a single ‘unifying’ theory 
could be proposed which could account for all phe-
notypic variants of disease [41]. Third, potentially new 
treatments could be assessed over larger numbers of 
cases rather than being exclusively tested on cases 
from a  specific group or previously defined disease 
entity [34]. 

There are also potential disadvantages of a sys-
tem based on multivariate geometry. These include 
a ‘disconnect’ with the traditional ‘classic’ disorders 
such as AD, DLB, and CJD, named entities which have 
existed for more than a century, and which could dis-
appear as a result [75]. In addition, if distinct diseas-
es are no longer recognised, there are implications 
for research studies which traditionally compare dis-

ease and control groups, e.g., studies of disease risk 
factors, the pathogenesis of disease, and in clinical 
trials. Nevertheless, it would be possible to carry out 
these types of study using a ‘continuum approach’. 
One method would be to replace the traditional com-
parison of disease and control groups with a ‘trend 
analysis’ in which the relationship between a quan-
titative measure, e.g., of a  risk factor, pathogenic 
factor, or result of a clinical trial is tested against the 
location of the cases relative to a PC using polyno-
mial curve fitting. For example, a PCA could be car-
ried out on cases representing varying degrees of 
clinical dementia and possible risk factors identified 
by plotting the regression of each measure of risk 
against the ‘loadings’ of cases on the PC, a  signif-
icant regression line indicating a  possible risk fac-
tor. In a clinical setting, such an outcome might also 
demonstrate the extent to which a new treatment 
might be effective over a wide range of cases.

In conclusion, different methods of quantitative 
analysis each have a  specific purpose, the basis of 
a  classification being to provide defined units of 
disease based on clinico-pathological features so 
that new cases can be diagnosed and assigned to 
the various groupings readily. By contrast, multivar-
iate geometry does not aim to classify cases but to 
describe the relationships among them and to dis-
play essentially continuous variation in disease phe-
notypes. The most important factor in ultimately 
deciding which type of the quantitative method is 
most effective is whether neurodegenerative disease 
can be regarded as comprising distinct disorders, 
overlapping phenotypes, or a ‘continuum’ of clinical 
and pathological change [8]. In the absence of a con-
sensus on this question it is likely that combinations 
of different quantitative methods will continue to be 
applied to the analysis of neurodegenerative disease.
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